

SOME NOTES OF FOREGASTING JACKSONVILLE DISTRICT

- By -

Grady Norton Neathe Bureau Office Jac sonville, Fla.

QC 995 .N6 1943

NO 13 Cotal G

ciples Lilway Center e Highway Room 520 s, Florida 38146

Some notes on Ferecasting, Jacksonville District? 08
(North Carolina, South Carolina, Georgia and Florida)
(By Grady Norton, WBO, Jacksonville, Florida)

General weather and temperature forecasting in the South Atlantic States presents many problems not readily selved by the voluminous writings of recent years by meteorologists who have applied the grental analysis system, isentrepic analysis, and various theories and formulas of thermodynamics, etc, in an effort to ensuer the forecasters prayers for better interpretation and prognostic methods. After some years, we find it just as difficult to forecast a cold wave, a snow storm. a hurricane, or even local thundershowers as before the newer methods came into use. In fact, I believe the evidence is unmistakable that we are not doing as good a job all along the line. The problem has been confused by too many theoretical considerations. For this reason, the following is written in an effort to get back to earth and set down a few practical rules for forecasting in this district based on observed behavior of pressure patterns, with only descriptive reference to air masses, fronts, isentrophy, thormodynamics, ect.

In dealing with the Jacksonville District, it soon becomes apparent that the weather situations differ widely from north to south. There is no sharp line of demarcation, but generally we will be compelled to think of Florida in a separate catagory from Georgia and the Carolinas Although considerable difference exist in various portions of Georgia and the

Carelinas, wharthote south and west to east, we will not attempt separate treatment as between these states. Florida will therefore be treated as one unit, while Georgia and the Carelinas will constitute another, for these purposes.

FLORIDA

FLORIDA weather must be divided into two classifications, viz, summer and winter. The months of April in spring and November in autumn will serve to divide the year roughly for this purpose, although some variation will occure from year to year. April is the dry month of spring on the average, while November is the dry month of autumn between the tropical rains of summer and the secondary rains of winter.

The summer rains, largely in the form of thundershowers, with occasional and infrequent tropical storms, begin with earnest in June, but may range from the middle of May to middle of June. From this time until the latter part of October tropical conditions without any air mass temperature changes (except at very infrequent intervals) prevail over Florida.

During this summer period daily local or scattered thundershowers prevail with more or less regularity. Any given station
in Florida will average a shower on half the days, but there is
considerable irregularity in frequency and distribution of
showers. It is only occasionally that these showers completely
disappear from all portions of the state, but they will range

from general and heavy to widely scattered and light, with noticeable periods extending over a week to a month, when they are fairly general or widely scattered.

From the stand point of the forecaster the main problem is to determine the period when showers thin out to the point where the areas covered will be too small and widely scattered to include them in the forecast. The problems of depth of moisture, convergence, convectional instability, insolation heating, divergence, subsidence, wind direction and force, and all related actions in a homogeneous air mass over a narrow strip of land extending nearly 500 miles southward into subtropical water, presents baffling situations of delicate balance. It may be recognized, therefore, that in Florida as elsewhere, 100% forecasting is impossible up to this time.

These few very generalized rules have been used with more or less success by the writer.

Atlantic High well developed as shown by Bermuda reading 1020-1025 mbs. or higher with western periphery near or over Florida.

This is a general daily shower type for Florida and can be depended on. This brings the isentropic moist tongue of tropical air over Florida in considerable depth around the center of the Atlantic high, far enough away so that subsidence is not present. If the Atlantic high protrudes well over the southeast, the moist tongue may be shoved westward to the central or west Gulf area and subsidence over Florida may be sufficient

be indicated in sufficient numbers to warrant a forecast. If the Atlantic high is weak or non-existent, showers become more doubtful.

The June Rains: After the dry weather of April and May (usual but not certain) farmers and fruit growers look hopefully for the beginning of the summer showers, which are popularly called "The June Rains". This is not a misnomer, for of all the summer months daily showers are more certain in June. A glance at the rainfall table in climatological data for June will show rainfall at a goodly number of stations practically every day. The exceptions are rare. As mentioned above, these rains may begin the latter part of May or be delayed to the 10th, of June, but when they begin they will persist for some time with fewer interruptions than in other parts of summer. One feature of the Junearains that should be kept in mind is they occur frequently at night as well as in the daytime. Later on in the summer by far the greater portion of showers occur in daytime-mostly in afternoon--with very few showers at night except when late afternoon showers extend a short time after sunset. The south wind of June is rainy.

TROPICAL PRESSURE WAVES

In recent years it has been shown that within the tropics there is a constant procession of pressure waves moving with the trade winds. For the most part these waves produce but small changes in pressure and they were not given much attention until

recently. Dunn has shown (Bul. American Metl. Society, June 1940, also studies by New York University on same subject). that they are very significant in tropical weather. Under favorable conditions a falling wave will produce a hurricane. etc. Aside from their interest as hurricane breeders in perhaps 10% of cases, the katalobaric waves have associated with them much (if not most) of the general shower activity in the tropics. In their course westward, they frequently swing around the Atlantic high, turn northward and pass over Florida, or pass directly in from the Atlantic over the Bahama Islands. In so doing they bring an increase in shower activity and produce many of the general shower periods of summer. These waves of decreased pressure are attended by an increase in moisture, and a rise in, or complete destruction of, the subsidence inversion. In other words, the moist air extends to greater heights and instability is increased. This, together with convective action, makes the ideal situation for showers. These are the moist tongues of the isentropic chart.

The rising, or analiobaric waves are more stable, the subsidence inversion level lowers, and the showers thin out after the rise moves in and establishes itself. However, the rising wave is by no means certain to stop the showers entirely. These, of course, are the so-called "dry tongues" on the isentropic chart. Some of the dry tongues move over the Atlantic from the northeast and east and may appear relatively dry and stable on the chart, but there is usually moisture and instability enough

in them to produce scattered afternoon showers in Florida in mid-summer when daytime convection is strong over the land.

In this connection, it should be pointed out that the "dry tongue", or anallobarie wave, or what you choose to call it, may increase convective activity at times. If the temperature is lowered aloft this is especially the case, since it steepens the lapse rate in the upper portion of the air (There will be no moisture or temperature change at or near the surface). This usually is the same as the rising wave moves in . - Showers thin out later on ofen sine well The periods in summer when showers thin to the vanishing point or disappear entirely are few, but they occasionally occur and may last a week or more. In most such cases it will be noted that a strong wave of falling pressure, perhaps a tropical storm, or northward in The atlantic last of Flacily, is passing westward far to the south of Florida, This draws drier air with a downward slope into the hurricane area and the In fact, there is nearly always a cessarion showers disappear. of showers for a considerable distance around a hurricane in all directions, except possibly in the direction from which it is moving, and they usually do not extend very far out behind the storm.

Mind Velocity, is an important factor in shower development, or lack of it, and also the area of the state where they occur. For example, a wind of 15-20 mph at and near the surface from the east will overcome convective action until the western portion of the state is reached. If moisture and instability are not particularly favorable, such a wind may prevent shower formation in all sections, while the same moisture and

instability would produce numerous convective showers if the lateral winds were, say, only 6-10 mph. The student should always take into account his wind velocity and direction in shower forecasting, as well as moisture and instability. A southwesterly wind will give little or no showers on the west coast, but will probably develop showers over interior points which will move to the east or northeast coast in late afternoon. Showers of the convective type tend to build up inland distincted from the coast at a distance depending on wind, velocity.

Hurricane and tropical storms: It has already been indicated that waves of falling pressure with their deeper moisture and instability in the tropics, are shower producers, and that the more unstable waves may develop into tropical storms of various intensities. When a storm developes from a wave, or appears from the Atlantic already developed, the problem of forecasting is largely a matter of figuring storm movement and issuing warnings of dangerous winds. The copious rain they produce is an important, but accondary, consideration. Nearly all forecasters agree that each storm is a "law unto itself" and that the rain areas associated with them differ with each disturbance. In intense storms or increasing storms the heavy rain area hugs closely to the center. Around this heavy area are squalls that extend outward a distance and disappear.

The tropical storms of Florida may move over the state in any direction from east through shath to west. Early and late season storms develop mostly over the western Caribbean Sea or

Gulf of Mexico and move north and northeastward. The midseason storms usually come from the east, but may curve up from
the Caribpan or recurve to northeast after reaching the Gulf
of Mexico. Except possibly in the case of young storms still
in the development phase, they will be considerably weakened
in crossing the Florida peninsula, but not dissipated. The more
intense hurricanes will cross with winds reduced, but still of
hurricane force. Small, but developing storms will cross with
little loss of force. The point to remember, is that with few
exceptions, tropical storms cross the peninsula intact. The
loss in force by land friction, will be regained when open water
is reached again. Some small weak disturbances, that have shown
no indications of strong organization, may lose their identity
in crossing the state, but this is rare.

Usually in a moving storm the rainfall extends a greater distance to the right of its path and this is especially so when it begins to curve northward. In most storms the heaviest rain will be in the right front quadrant. Rain does not extend far out to the left of the center. A storm that ceases to move, will have rain all around it. Florida is affected by one or more of these storms annually on the average. The slower the movement, the heavier will be the rainfall because any given place visited will be in the rain area a longer period of time. A relatively weak disturbance may produce as much or more Tain than a fully developed hurricane, especially if it moves slowly.

On the approach of a hurricane, the convective showers thin out or disappear for a day or more, then fitful squalls of wind and rain set in on the periphery of the hurricane circulation extending mostly from the center line toward the right. The squalls become more frequent and heavy as the storm approaches.

Disappearance of tropical showers in autumn

The convective showers begin their disappearance around the middle of September as a rule, usually with the advent of the first fresh polar continental air into Florida. High pressure areas move off the sontinent and increase over the North Atlantic area as fall approaches, which gives a prevalence of northeast winds over Florida. These winds are relatively moist and unstable and bring rains, but they drive the old summer tropical air out. As October comes in there is a shift of the heavier rainfall to the eastern portion of the state, largely caused by the prevailing moist northeast winds impinging on the land. These rains ordinarily become lighter as the distance inland is increased and become very light or disappear before reaching the west coast, but the rain is often heavy on the east coast, especially the lower east coast.

In forecasting the east Florida rains in late September and October, of course the general descriptive matter above must be used judiciously. At times the moist tropical air has not been displaced southeastward, at other times tropical disturbances move northeastward from the Gulf, or weak disturbances remain in the Gulf with overflow of moist air aloft over Florida. In such cases, the rains will be general and prolonged. Usually, however,

a forecast of rains over east and extreme south Florida is sufficient for early autumn "Northeasters". When the north-cast winds change to some other direction, the rain will end. While on the subject, it might be stated that northeast winds having a wide sweep over the Atlantic from strong highs will give some rains, mostly light, along the Florida east coast at any season of the year. The condition is merely more productive of rain in early autumn.

Transition Period and end of rainy season comes with late
October and November. The summer tropical rains are over and
the winter disturbances do not move far enough south to produce rain. November is the driest month of the year, except in extreme
Southeast Florida Recember is the direct.
The Retrograde Wave Showers

In summer there is a rather peculiar type of thundershower not uncommon in north Florida. The situation will be more fully described under the discussion of summer weather in Georgia and the Carolinas because these states are more affected than Florida. Here it will suffice to say that occasionally a weak bubble of low pressure lingers in the foehn area of South Carolina after the passage of a low pressure through off the north Atlantic coast, and is caught in an anticyclonic circulation around a dome in the vicinity of Tannessee and the Ohio Valley, in the upper air. This circulation gives a northeast upper air wind over the Carolinas which moves the weak surface bubble southwestward. The over-turning, due possibly to overrunning cooler air aloft, produces thundershowers which move southwestward over Georgia and north Florida. On at least two occasions

such waves have moved further south than usual over north florida and increased to hurricanes as they moved westward over the Gulf.

Some characteristics of these thundershowers are their formation at high levels above the surface, local or scattered, very
severe electrical activity, frequently some hail which indicates
severe turbulence, move from northeast, and are over as soon as
the series pass-usually in one twelve hour period. They occur
either day or night since they are not dependent on daytime
convection.

Conclusions: The reader will be impressed by this time that the summer showers in Florida are not easy to forecast accurately, if they were not so impressed by the opening statements. The delicate balance maintained by the forces producing them often baffles correct interpretation. The most important factors are instability and convection. Of these two, convection over the heated land surface in daytime, causes decided preponderance of showers in the daytime—(estimated \frac{1}{4}). At night, convection weakens and disappears and during the latter part some subsidence occurs. Therefore, showers in afternoon and clear sky in early morning is the rule. For much of the average summer, the best forecast will be scattered or local afternoon thundershowers, with some at night and early forenoon.

But don't expect to verify with more than 80-85% accuracy, regardless of how you try to guess them.

Temperature changes summer

No air mass changes in temperature occur in Florida in summer. Temperatures are affected only by rainfall—or lack of it. As long as daily showers occur, no excessive heat is experienced, but when showers disappear temperatures rise with the cumulative effect of insolation. Then with the reappearance of showers the heat is modified. Beginning with June and extending to September, temperature changes may be ignored by the forecaster. Such changes as do occur are caused by rainfall, and since these are local, and since no air-mass change occurs, attempts to forecast are not justified ordinarily.

Florida Winter

From late October to early December, especially in November, dry weather is the rule—the driest period of the year. The tropical rains of summer have been displaced by continental dry air, with frequent new importations from continental highs. During this period extreme care should be exercised in making rain forecast. Cold fronts frequently do not have any precipitation associated with them. The storms of the winter westerlies do not move far enough south in their tracks to give much rain in Florida.

This does not prevent sharp cold changes from reaching Florida in hovember, especially northern Florida. Therefore, forecasting in this period is largely a matter of being on the alert for the first damaging frosts.

Beginning with December and continuing roughly through March the extra-tropical winter disturbance may be expected to develop far enough south to make weather forecasting somewhat similar to that for frontal disturbances in other sections of the country. Wave disturbances that develop in the Gulf of Mexico or move east-northeastward from the Rio Grande country are the best rain producers. Ordinarily they give twice as much rain and with twice the frequency over northern Florida as in southern sections. Many winter disturbances give rain over north Florida without any in the south.

Frontal Rains: Warm Fronts:

The warm front in Florida during Winter is not usually attended by much rain if the low center is to pass some distance north of the state. In such cases the warming is quite general simultaneously. This does not favor rain as a rule.

This is not true of wave disturbance from the Gulf moving northeastward. The warm front of such waves are preceded by general rains north and northeast of them, and as soon as the wave passes the rain ceases and the cold front, if not strong, will have none or only brief showers. The heaviest rainfall in winter is associated with the Gulf wave disturbance and is mostly of the warm front type. In most cases, the heavy rainfall will be north of the wave and it's position when moving over the state will indicate the area where the heavy rains will occur.

Cold Fronts: As already stated the cold fronts of Gulf waves, if well marked and oriented more north-south so that they

pass over the state from west to east, may be attended by brief showers. Aside from the Gulf waves, with their warm front rains, the rainfall of winter disturbances is mostly cold front type; surface or aloft.

The best rain type is where the cold front extends well southward into the Gulf, followed by a high of sufficient strength to push it eastward over Florida still with a north-south orientation. If the front stalls over the Gulf and it's northern portion continues moving eastward, giving a more north-east-southwest orientation, then it may become stationary and wavy in the Gulf and over Florida, and one or more Gulf waves pass along it attended by rain.

However, if the cold front is fairly vigorous and is pushed on over Florida it will be preceded and attended by rain, mostly in the form of showers, followed immediately by clearing.

The movement of cold fronts and their behavior over the Gulf between Texas and Florida is a first class problem even when a reasonable number of ship reports are available from the Gulf. When ships reports are not available, the problem is practically impossible. To track, or extrapolate, the movements and changes of a cold front traversing nearly a thousand miles of tropical water, without reports, is a task that is almost impossible, especially if waves develop.

Cold fronts often undergo frontelysis without wave

Formation over Florida and the Gulf. This happens in

winter more frequently than might be expected. The front merely becoming weak, then diffused into a fairly broad zone, and finally disappearing under subsidence and slow mixing and heating. At least half the cold fronts, perhaps more, will behave in this manner. This will nearly always occur if the front is meeting ar old modified polar air mass over Florida and the Gulf, and it even happens on occasions where tropical air prevails, although rain is more likely if the front is meeting tropical air. From this, the forecaster will see that cold fronts have to be carefully studied in each case. Don't jump to the conclusion that wave action will set up on the stalling front. Most of them will undergo frontolysis and disappear. Such dissipating fronts frequently have no rain associated with them. When the front extends due east-west it will very probably dissipate.

Cold Fronts Aloft -- or pre-cold front rain and thunderstorms.

This type of rain should be looked for in winter and spring. It will occur more often than might be expected. The surface map should be carefully noted for any evidence of a cold front aloft or the development of a line of thundershowers well ahead of a cold front. If upper winds are available they should be studied for evidence of over-running or convergence at higher elevations. When the cold front aloft is present-(and it may be so weak that surface pressure tendencies are not much affected)- the rain will attend it's passage, (some times attended by thunderstorms or squalls) from 50 to 200 miles ahead of the surface front. In

such cases, little or no rain will attend the surface front when it arrives, even though it be a fairly vigorous front. Clearing weather may follow the pre-frontal showers or cold front aloft, and the surface front have entirely clear weather on passage.

Cold waves, frost and freezing warnings

In the winter season it is the cold spells of sufficient severity to give frost and freezing that are of most concern. It is in winter that truck crops are grown and the ripened citrus fruits are exposed to damage from freezes. Cold waves as experienced in northern states are rare in Florida. Occasionally technical verifications may be experienced, but on most occasions the cold of damaging severity takes two days (or rather nights) to reach a cold wave minimum. Hence cold wave warnings are rarely needed and seldom used even if technical verification is expected, rather the minimum temperature expected is forecasted.

weather into the Florida peninsula is to have a complete displacement of the normal maritime or tropical air. It will also be obvious that the only way to have polar air penetrate far into the peninsula, is to have it flow off the continent and straight down over land. If cold air flows from the west over the Gulf it will be modified by the warm water. If it flows from the northeast or east, it also /moves over/ warm Atlantic mater. So, we must have an importation of polar continental air from the north or northwest,—the only directions from which it can remain over land in its journey down the state and

not be unduly modified by marine influences. But when cold air is drawn down over the peninsula it becomes very stable because it is colder than the air over the surrounding water, and it will remain in position undisturbed until a gradient flow or air from some marine region displaces it. Radiation in a thin surface layer of this polar air is terrific on a calm, clear night over Florida. This is usually the second night of the cold spell when the high center is over Florida or near enough to give calm conditions. The radiation effect will be disturbed or destroyed if the air is moving as much as 10 mph, during the night.

The question, then, is when will the polar air come from the right direction for penetration without modification, and how long will it stay? Will a calm night provide radiation before the cold air is displaced? If so, don't forecast warmer, but continue the cold warnings for another night. It will be colder in radiation pockets.

When a large number of winter maps are examined, it will soon appear that cold weather advancing from over the continent begins to slow in its advance into the southeast on many occasions, and the cold front slows to a stop. Much of this slowing and stopping occurs over southern Georgia and northern Florida. Unless the cold currents are strong and deep and flowing in a direction to come straight down the peninsula, the cold will not penetrate very far but will be shunted off to the northeast. Study the direction and depth of the cold air.

The ideal cold type is to have a <u>low</u> or a deep trough, pass over Florida with a deep cold current following from the northwest. However, the old idea that the passage of a deep low over the state is a necessary prerequisite to a cold wave, is not to be depended on. A deep cold current will bring the cold if it flows straight down off land over the state, regardless. Therefore, valuable clues are to be had from the upper air winds. These should be carefully studied in connection with all cold weather conditions.

A careful examination of the 12 hour and 3 hour pressure changes will frequently indicate the tendency to shunt off to northeast. If the greatest rises shift to northeast, while the rising tendency is weaker over the Gulf States, it is good indication the cold will advance northeastward. The upper winds will usually confirm this by showing shallow northerly currents backing to westerly at higher elevations.

The Texas High: In the winter season, the high that moves off the plateau or plains across Texas and the Gulf States or Gulf should receive careful attention. The normal movement for such a high will bring the center from Texas to Florida in 24 hours. On the castern side of this high as it advances, the air will be pulled southward over Florida from the region of Tennessee, Alabama, and Georgia all day and part of the night. Then the latter part of the night the high center reaches Florida and the air becomes calm and, of course, clear. The northerly winds have brought air of dry continental type

with low dew point into the state, and when it becomes calm, radiation gets in its work. Resultant temperatures over Florida will be considerable lower than were noted anywhere over the west Gulf states the previous morning in the high. Frost is likely to be heavy and extend over north and central portions of the state. Minimum temperatures may be ten degrees lower in Florida than they were in Texas the previous morning. The mistake that should not be made is to be influenced by minima over Texas, or to think because the center of the high will move near or over the Gulf in its journey to Florida that it will be modified on arrival. Rather note from whence the dry C.P. air is coming while the high is approaching, and decide what radiation can do to it during the calm hours after midnight.

The high that is displaced southward, lingers, and keeps polar air over the state under relatively calm night conditions, is another troublesome type. This happens when a high is depressed southward by a low with a considerable pressure fall advancing southeast or east over the northern states tending to run over the top of the high but not extending far enough southward to open a trough into the west Gulf. Under such conditions the high or a high ridge will be displaced southward over Florida extending sortheast-southwest, and will continue to have its polar air mass little disturbed. Radiation where relatively calm conditions prevail at night will continue. Greaftest radiation will be under the center of the ridge--(usually extending in a west-cast direction). In Florida, care should be exercised, therefore, in fore-

casting a rise in temperature under such condition. Usually minima will not rise and frost conditions may continue until the ridge moves from the state. If the ridge is over southern Florida it will be colder there than in northern sections.

Freezing in Central Florida.

In a study of cold wave types some years ago, Mr. W. J.

Bennett concluded that freezing would not be experienced at

Tampa the next morning unless temperatures as low as 32 degrees
had reached the middle Gulf coast—at Mobile, Pensacola or New

Orleans. This is a very good rule for Tampa, but does not apply
equally well to frost pockets in the interior east of Tampa.

Even for Tampa the rule has exceptions, as we have observed on
several occasions. Of course freezing will reach the middle
Gulf coast many times in winter without similar temperatures
reaching into central Florida 24 hours later, but failure of
penetration will be evident from other factors.

approach to cold penetration down the state lies in a careful survey of the strength, depth, and direction of flow of the cold winds. Are they deep and cold? and do they flow straight down over the state? If so, they will bring the cold. Then be on the diert for a stayover for a second night with radiation. When the winds begin to come in from the northeast at the surface and/or at moderate elevations above the surface, temperatures will begin to rise. This is usually the first indication of breaking of the cold. These winds come in off water and raise both temperature and humidity.

GEORGIA AND THE CAROLINAS

The weather in these states will be treated as a unit, although great variations in behavior of weather types are experienced. One of the principal causes of weather variations, aside from latitudinal considerations, is the topographic features. The Appalachain Mountains on the west and northwest with elevations up to 6000 ft, exert a very significant influence, but the warm water of the Atlantic and Gulf on the east and south is another great factor influencing the weather of the region. The topography of these states falls into three generally recognized zones, viz., The Mountains, the Piedmont, and the Coastal Plain. These divisions might be roughly defined by lines drawn through Greensboro, Charlotte, Greenville, and Atlanta; and another through Raleigh, Florence, and on Southwest to Albany, Ca. Bordering the Atlantic and Florida will be the Coastal Plain, next the Piedmont, and then the Mountains on the northwest. However, there are no sharp demarcation lines, or particular weather types associated with each, but rather certain gradations and contributory influences produced by each in weather disturbances passing over them.

The mountain barrier, while only 3000 to 6000 feet in elevation, is sufficient to slow the progress of fronts which must pass over it. The weaker cold fronts, for example, with shallow cold air behind them may be stopped; those of moderate depth will be impeded to some extent until the cold air banks high enough to flow over. This results in a lag in getting

mountains in the Carolinas. Strong cold fronts will pass over without much, if any, slowing. Another pronounced temperature effect of these mountains is when warm fronts move from the southwest or west and the warm air is raised to pass over, it will continue aloft and pass over a thin layer of cold air to the east and not change the surface temperature until the cold air is slowly scoured out, which may take some time. Occasionally in winter fairly deep low pressure systems will pass without completely removing this thin cold layer on the castern side of the mountains. This will especially be noted if a secondary forms in the Picdmont or Coast Regions.

The mountains also have a certain amount of foehn effect on air flowing at gentle or moderate rates down the southenstern slope, especially if no precipitation is present. Although this foehn is very weak as compared to the eastern slope of the Rockles, it is a matter of sufficient importance to engage the attention of the forecaster. Its greatest effect is felt in the South Carolina Piedmont section. Mention has been made of the foehn low pressure bubble which forms in this area in summer, in discussing Florida weather. It was noted that it moves southwestward when a dome of anticyclonic circulation over Tennessee and the Chio Valley is in a position to give northeast winds aloft over the Carolinas. In these cases it reaches best development when the air is initially too dry to produce showers and foehn heating has a chance to raise the temperature in the

lower layers and the weak heat low has time to develop before showers and southwestward movement begins.

In winter, some writers have expressed the belief that the effect of these mountains in diverting the lower level winds, together with fochs action, are important factors in the development of South Atlantic Secondary lows. In winter, however, the low pressure areas developed in this area move northeastward out over the Atlantic, usually with increasing intensity. It is the writer's belief, that the greatest factor in winter secondary development in this area is the warm Atlantic and Gulf which furnish heat and moisture so necessary for storm development. The effect of the Appalachain Mountains is a secondary, though significant feature.

The adiabatic temperature change by prographic lifting of the mountains and its effect in producing precipitation should be kept in mind. At the dry adiabatic rate, air forced to rise over these mountains (3,000 to 6,000 feet) would be cooled 18-36 degrees, if it started from sea level of the Gulf or Atlantic. At the saturation adiabat the cooling would amount to 11-22 degrees. From the Mississippi and Ohio valleys, which average only about 500 ft. above sea level, the lifting is only slightly less. Of course there are some passes through the mountains at lower elevations and some air will pass through without so much cooling, but the forced ascent is a decided factor in producing precipitation. The heaviest annual rainfall in these states will be found in southwestern North Carolina and extreme northeastern Georgia

where moist air from the Gulf and Atlantic is forced to rise over the Great Smokies.

T.,

and will occur with greater frequency in these mountain areas.

The forecaster should note the wind flow and keep in mind the orographic lifting. Rainfall will have to be forecast many times in the mountains when other sections will have little or none. At other times rain will begin in the mountain area much sooner than elsewhere.

These remarks on general features and topographic characteristics and influences, although but briefly outlined, should be constantly in the mind of the forceaster. Those preparing themselves to make forceasts for this area will profit by a thorough and careful study of the variations in the behavior of weather systems passing over them.

LOWS (NINTER)

Low pressure disturbances with idealized frontal patterns, which appear so easy when presented for illustrative purposes, as well as satisfactory computation of frontal movements, are rarely experienced in this area. Front and trough computations cannot be relied upon more than half the time in winter, and the rains associated with disturbances do not conform to idealized

frontal patterns much better. Too many complicating factors are experienced. Old fronts may slow up, new fronts may form, or new secondaries may form a completely new system of fronts. The mountains may disturb the frontal continuity and the rain areas may be influenced by the orographic features, etc.

Therefore, the first rule for the forecaster has to do with divesting himself of many preconceived, or idealized, conceptions of frontal patters, frontal movement, and the rainfall and temperature associated therewith. He must content himself with judicious and sparing use of these tools. There are times when they work well, and should be used, but more often the situations do not lend themselves to these prognostic methods.

The upper winds, if available, are more dependable for computing direction and speed of movement than frontal formulas, while the 12-hour and, to a lesser degree, the 3-hour pressure changes, come next in importance. The forecaster will find these charts very valuable and frequently the answer, when other methods give misleading results. Emphasis should be given these at all times and, if other methods do not confirm deductions therefrom, subsequent developments will soon convince the skeptical that the upper winds and the pressure changes are his best friends.

Southwest Lows: The disturbances from the southwest are the best and most certain rain producers. They may move north-castward over Tennessee and the Ohio Valley when there is a high over the South Atlantic area, or they may take a more easterly

course and move across the Gulf States and up the Atlantic coastal plains when pressure is high in the interior or when winds aloft are from the west. The disturbances moving northcastward with center west of the mountains may form a secondary with its own frontal system, just as if it was split into two sections by the mountains. The warmth and moisture of the Atlantic and the disturbance of marm air flow by the mountains are principal causes. The secondary increases, while the center west of the mountains fills. In either case, timing the beginning and ending of the rain is a problem. For most of the winter and spring season the best and surest indication is found in the 12-hour pressure change. A fall of 3 mbs. or more on the Texas or Louisiana coast (8:30 a.m. map) with a receding high in the cast will be followed by rain beginning in Georgia in 24 hours and will cover most, or all, the area in 36 hours. If the fall is a secondary fall area with a primary area of fall to the northward over the plains or Mississippi Valley this rule is especially good, for it may be the first indication of southern secondary formation. This secondary pressure fall should be played for rain, unless, all other indications are against it. Cocasionally a fall of foehn character has been pushed southward to this area. In this case, it has no rain with it and will probably fill up.

For speed and direction of movement look to the winds at levels of 5,000 to 8,000 feet, making some allowance for changes that may be expected in the next 24 hours, and for depth of the

surface circulation. This type seldom lends itself to frontal calculations. Warm front rain will have to be forecast many times when there is as yet no warm front on the map. Rain ends with passage of center of disturbance, except rains may linger in the mountains until the disturbance is well out of the way. If the southwest Low is well developed and moves northeastward without secondary formations, the temperature will rise evenly with the southerly winds flowing into it over the area. If a secondary forms, or if the Low takes a more easterly course, the temperature becomes a problem. In such cases temperatures rise until rains begin. Thereafter the rise will be confined to the coastal plain, while temperatures in the Piedmont and eastern mountain slope may fall in the rain to near the dewpoint and remain low throughout the passage of the disturbance. If dew points in the area are below freezing precipitation may change to snow. Then when cold air from the northwest comes in behind the disturbance, a forceast of colder for the mountains and coastal plain will be necessary, while in the area that remained cold during the passage of the low, temperatures may rise slightly or not change until the temperature distribution is brought into normal relation. Thereafter temperature will fall more evenly if the advent of cold air continues.

The stalled cold front becomes wavy

Mention has already been made of the great number of cold fronts that slow down and become stationary in this region, expecially the southern portion. One reason frontal computations

are so uncertain is that cold fronts advancing over the frontiers, especially from the northwest, begin to slow in their advances in the region of Tennessee, Mississippi, and Louisiana. continued movement will be regarded to an extent depending on the strength of the High over the South Atlantic area, compared with the strength of the advancing cold air mass. mill be discussed below. The fact is that a large percentage of cold fronts slow down and eventually stop and become wavy between the Appalachian Mountains and the Gulf and Atlantic This stalled front with its possibility of waves, presents one of the most difficult problems in forceasting. The formation of waves and the spread of the rain back north of them, and of course the failure of the cold air to advance until the waves get out of the way, causes many of the forecasts failures in winter. Where will the front stop, and where will the waves form? These are the hard questions.

The normal condition of a cold front from the northwest is to lag in its southern section while the northern swings on castward. The southern lag is produced by the High holding over the southeast, the relative shallowness of the trough attending the front from a cyclone center hoving castward over the northern states, and other features such as the warm water of the Gulf, the Appalachian barrier, etc. A number of years of careful study has not given me the solution of the problems in all cases. It is believed, however, that the upper air winds and the pressure change charts are the best aids. If the High over the South Atlantic is fairly strong and stable, i. e., without appreciable pressure fall in 12 hours, and

little or none in 3 hours, the front will stall. A careful study of the winds aloft may indicate where waves will form and where rain will spread, by their degree of over-running from the southwest.

lif the high is giving way in the southeast and the advancing high is vigorous, the front will continue to advance without waves. In this connection, it will be noted that highs which move into the southeast from the west or southwest rarely become stationary and stable. These usually keep on moving eastward and out of the way. It is the high that come; down from the northwest or north and settles into the South Atlantic area that becomes the most stable and persistent barrier to fronts. The depth of its wind system in the upper air is an indication of its strength and stability. The pressure at Bermuda is another helpful index. If the pressure is 1025 mbs. or higher and not falling appreciably there, or on the south Atlantic coast, you can be sure of an effective barrier to advancing fronts.

Where do the waves form? The answer is anywhere: Three places are favored. (1) The Gulf coast area (those forming east of the mouth of the Mississippi are the most troublesome because of proximity to the region and quick rain development.)

(2) The southeastern slope of the Appalachians (usually the Piedmont Region of South Carolina and Georgia), and (3) Off the coast between Jacksonville and Hatteras.

The East Gulf wave is the most troublesome because it is not easy to find and when once formed it may spread rain over


the West Gulf it gives more time before rain begins. The spread of rain to north of the position of the old front depends on the strength of the wave. This may be indicated by the upper winds, if they are available, or by upper clouds when low overcast is not present. In most such cases low clouds will be present and no upper winds or high cloud information will be available. The forecaster then has to fall back on his surface pressure distribution and such 5,000 and 10,000 feet data as are available. Careful study will usually show some indications of when and where waves are forming or likely to form. Pressure falls do not appear until the wave is developing—often too late. The fall attends the wave and does not preceed it to any great extent.

The Piedmont waves are troublesome, but not so much so as the Gulf waves. In the first place they are easier to find, and usually rain will already be falling in the area and the forecaster merely has to continue it, and try to guess when it will stop. In the mean time temperature changes, or lack of them, will be difficult to forecast. The rain area will, of course, be mostly north and northeast of the wave, but showers may also occur in unstable air south of the wave and along the cold front, ending with the cold front passage. The change to colder is, of course, retarded until the wave passes.

At times the Piedmont wave is not developed by a good overrunning warm wind. It then assumes more of the form of a foehn wave. This may be expected when the high is weak or weaking slowly over the Atlantic and Florida. The colder air from the stalled northwestern high will flow into western Georgia, while the main portion swings over and comes down east of the mountains. This folds up the wave into occlusion usually in the Savannah River Valley. This is really the meeting of two sections of the cold front. The warm fochn air is easily shoved upward between the two cold fronts and passes off. The front meanwhile may straighten out off in the Atlantic or perhaps a portion of the wave near the coast did not occlude, in which case it reforms off shore and thereafter acts as an Atlantic wave. The rains which may have been present, will soon cease when the wave occludes. Drizzle may persist for a few hours after the occlusion, but it can be depended on to end shortly after occlusion is completed - or when the front gets off shore.

The South Atlantic Waves ordinarily do not give much predipitation, except possibly on the Carolina Goast. When the cold front passes off the coast before a wave forms, the rain generally stays off shore, or only on the coast, and temperature falls normally - (or even faster) - over the area. The rule here is that once the front passes out into the Atlantic, it will not cause much trouble on land unless it extends into the Gulf where a Gulf wave may form later.

These waves move northeastward in winter. Unless there is positive indications that the wave will be caught by a high moving over on top and blocking it and later pushing it inland, northeastward movement can be depended on. This happens only on very rare occasions.

Another form of the South Atlantic wave, or front, will be formed at times when a high moves out over the Atlantic with center well to the north and tends to straddle over the warm Gulf Stream some distance off shore. As the main body of the high swings eastward or southeastward over the Atlantic, the warm front over the Gulf Stream area (more properly a pseudo warm front) is pushed back toward shore. At times this front joins in, or is drawn northward into, a low pressure system moving eastward over the lower Lake Region toward the middle and north Atlantic states. In such cases warm front rains advance rapidly northward. On most other occasions, however, this condition does not produce rainfall with any degree of certainty. Precipitation, if any, will be generally light, scattered and flashy, and the chances of forecasting it in the right place and at the right time are remote. This front is being returned by modified, and to some extent stabilized, polar air which is still relatively dry with some subsidence. On some occasions this pseudo warm front will advance northward with little disturbance of the general isobaric pastern and dissipate while the stable Atlantic high fills in under it.

Lows with cold fronts aloft or double cold fronts: Lows with such cold front patterns are rather frequent in winter and spring. The first front, either surface or aloft, is likely to be an m.P. front, while the second front will mark the advance of c.P. air. Precipitation associated with such systems is nearly always in connection with the first front and little or

no rain attends the p.C. front, except in the mountains. The temperature fall is in a double wave, modifying the rapidity of the fall to cold wave proportions. Technical cold wave verification may fail in such cases. (See Page 15 above)

Troughs with east-west isobars ahead of the front produce very little rain. The more north-south the orientation, the more convergence and rain. When isobars trend more east-west, little convergence occurs at the front, the wind merely shifts from west or west-southwest, to northwest. When winds flow from the west or west-southwest, there is a certain amount of downslope movement, and since they will not be as moist as winds from the south to begin with, the slight fochs effect with descent will lower humidity. This does not favor much rains

While discussing troughs, it might be well to note that
the summer troughs are rather treacherous also as shower producers. The deeper the trough and the more east-west trend of
the isobars in front, the more disappointing the rain is likely
to be. The fresh winds of the deeper troughs seem to disturb
convective processes and unless there is pronounced convergence
little rainfall occurs. Here again the southwest and west winds
have a slight down-slope foehn drying to add to weak convergence and disturbed convection.

HIGHS (WINTER)

Forecasting in connection with high pressure areas is generally relatively easy as compared to lows, troughs and waves. The typically clear, brisk, cold weather of highs is supposed

NOAA Coral Gables Library Center 1320 South Dixie Highway, Room 520 Coral Gables, Florida 33146 to give the forecaster his breathing spells while he watches for the next storm or rain area. So we should all like highs - at least those that behave. All we need to do is make accurate temperature and frost forecasts: The trouble, however, is that all highs are not as tractable as we would like them to be, - far from it! Then let us devote some attention to those types of high pressures whose recalcitrant behavior makes them the black sheep in an otherwise unblemished flook.

The strong eP high which strings down from Alaska and Western Canada is a trouble maker. It seems to pivot in Western Canada while sending a stream of cold air south and southeast over the country, attended by very low temperature, which fans out somewhat as its forward isobars reach into the South. look like cold waves with a vengence, but very frequently it will be noted that winds aloft over the south are from west or even southwest, and the forward cold winds of the high are shallow. Then it will be noted that the southern elongation of the high begins to swing eastward, perhaps from the southern Plains or lower Mississippi Valley. When these conditions are noted, a rain, area develops over the South well up against the high, and its southern extention is swung rapidly eastward, with the rain following as rapidly. This is a case of over-running warm and relative moist air above the shallow shrface cold. A shallow wave may develop but this does not always occur. rains move rapidly eastward and the cold wedge ahead of it. What appeared to be a change to colder, finds temperatures unchanged or rising in 18-24 hrs. over the southeast. When the rain area, or wave disturbance if it develops, reaches the Southeastern States, the parent high still over the north-west sends another rapidly moving impulse of cold air down the plains and Mississippi Valley behind the wave. This time the cold will come through if the strong westerly winds aloft do not persist. If they do persist, we have a repetition of the first movement and the process will continue until the cold high over the northwest finally comes through. The rapidly moving precipitation areas, and the rapidly fluctuating falls and rises in temperature, while a severe cold wave continues to threaten, causes many gray hairs for the forecaster.

The initial movement is the more frequently experience, viz, a rapid swing eastward of the first high impulse followed quickly by rain. Then another rapidly moving cold impulse which usually comes through with a cold wave. This movement is difficult to forecast properly, but when the process is repeated several times, it becomes one of the most disconcerting of all winter conditions.

The Arctic High from Central Canada.

This is the quick cold wave high that has a habit of catching forecasters napping. Its a fast mover and plenty cold on arrival. The usual setting for such a high will be a strong Great Basin high which has persisted for some time and sent C.P. air under relative high pressure castward and southeastward over the central and southern planes, the lower

Mississippi vally and Gulf states to the south Atlantic. A vigorous upper level cyclone will develop in the Lake Region and moderate surface lows will move southeastward into the Lake Region and occlude. In the meantime the deep cyclonic eirculation builds up and winds are strong from the north and northwest. Then the high appears over central Canada as the artic air is drawn down from west of Hudson Bay, by way of Manitoba, showing a sharp rise in pressure and very low temperatures. It is usually preceded by a moderate fall in pressure. The basin high has begin to weaken. It is now time to wake up and move! The artic front moves with the speed and direction of the gradient winds and will drive everything before it. It will frequently be noted that these winds are 40 to 60 m.p.h. from the north and northwest. A little plain multiplication by 24 hours will indicate where the arctic front (and the cold wave) will be tomorrow morning! It will show a 1000 to 2000 mile movement, on many occasions, and that brings it into the Southeast. I have observed this front in Wisconsin and northern lowa, and 24 hours later it was over northern Florida.

It should be remembered that this is arctic air, and therefore much colder than the polar air that may already have temperatures below normal. Its southward advance will be indicated, to some extent at least, by the upper winds. It will begin to swing eastward where the high level winds around the deep upper level cyclone become westerly. But the fact that this cyclone may be displaced eastward should be taken into account. This eastward displacement may change

the winds from west to northerly as the system advances, and thus bring the cold farther south.

The high that stalls against the mountains in the south, but rolls over in the north and comes down east of the mountains. There is a definite tendency for cold air to come down from the north and northeast, east of the mountains in connection with all highs which move into the middle Atlantic states from the west and north. The change to colder frequently extends southward and southwestard into Georgia. The extent of the southward journey being determined by the strength of the high and the resistance encountered. In winter the high that stalls against the mountains and rolls over, presents a double problem in forceasting temperature changes. The situation is frequently as follows: A cold, but rather shallow. high advances to the mountains and middle Gulf toast moving from the northwest. Here its progress is unpeded or stalled, and the southern part over the Gulf states does not make much more castward progress. The main body of the high further north crosses over the mountains of West Virginia and Pennsylvania and the cold air begins moving southward east of the mountains. In the meantime temperatures have not changed, or may have actually risen, in the fochn area, especially in South Carolina. Then the cold air sweeps down from the north and northeast bringing the colder change, perhaps to eastern and southern Georgia. Seldom will the cold change be of cold wave proportions, except at times in North Carolina, but considerable colder nevertheless.

ENSERT----- Middle of Page 37..

. 77,0

when southward movement ceases, the front frequently begins returning as a warm front. It will usually be extending from southeast to northwest through Georgia but sometimes may cross extreme north Florida into southern Alabama. Some rain may or may not attend the southward movement of the cold front, but quite frequently rains of the warm front type will appear and advance back northward ahead of it.

It will seem that in these cases the forecaster will have to delay a colder forecast while the cold air crosses the mountains to the north and returns down the eastern slope.

High from Hudson Bay Region or Eastern Canada.

These highs must be watched for the same tendency to send cold air down the Atlantic plain. Their normal movement is southeastward, but the cold air has a disconcerting habit of extending much farther south in the Atlantic plain area than might be expected. The forecaster should be alert to this characteristic, or he will not forecast colder far enough south. The "Northeaster" cold changes frequently reach southward to Savannah, Macon and Jacksonville, but will not reach further unless the temperature is much above normal in Florida when some cooling toward normal may occur.

Highs from the west or southwest. Colder changes from these directions are usually moderate but may give freezing or lower. They generally move rapidly over the area without undue complications. If they follow a Gulf low or a south Atlantic secondary, the colder change may be complicated in North Carolina by cold air remaining east of the mountains as described above for South Atlantic secondaries.

The high that sends a vigorous tongue down the Atlantic plain is very persistent at times. This is most likely to occur in fall or early winter while the Atlantic is still warmer than it will be later in winter. It may have low pressure over the Atlantic as its counterpart, and remain in place for days, aided by the tendency for cold air to linger

cast of the mountains until it is scoured out by south and southwest winds. In December it has been noted to persist for a week or ten days, When no well developed disturbance moved in from the west or southwest to disturb it. A flow of west or southwest winds aloft will not disturb it much since they are forced to rise over the mountains and pass on over the thin cold layer. Cold drizzle, fog, and light rains will persist while such wars overflow continues without much temperature change. If there is no over-running winds, of course fair weather prevails.

Summer Weather -- Georgia and Carolinas

In summer this area has few pronounced air mass changes but weak frontal systems are not uncommon and occasionally one of sufficient strength to change the prevailing tropical conditions will move through. The rainfall, therefore, is partly tropical and partly frontal showers, but there is less regularity of occurrence than in Florida. Southern Georgia shares with Florida in the prevallence of tropical shower conditions, but in the remainder of the area the purely tropical conditions decrease with distance from the tropics.

Much of the summer the Atlantic high pressure area with its variable strength and position is the most dominant factor. If it is well developed and in position to bring gentle winds from southeast or south, the showers are more certain and general due to upslope movement. If the central ridge is farther south and southwesterly winds prevail, few

showers occur except in the mountains of Georgia for elsewhere down-slope winds will not favor many showers. An ill-defined, flat, high pressure with little gradient and light wind movement is a good convective shower type. If a weak, indistinct front is present with gentle convergence, the conditions are very favorable for showers.

"Treacherous Troughs"

Mention has already been made that the stronger troughs are disappointing rain producers. I call them "treacherous troughs". The lack of strong convergence at the front, the stronger gradient winds, fochn subsidence, and diversion, are some of the causes of scanty and scattered rainfall associated Whatever the causes, many of these stronger low with them. troughs in summer have less showers than most any other type of pressure distribution found in the area. The natural tendency of the forecaster is to expect general showers in a good trough, but when the condition has passed he will find that most of the cases will not give more than 25%--(and many times even less)-in area covered by rainfall. Unless the high in the Atlantic is in position to give a decided north-south orientation of isobars on the eastern side of the trough, caution should be exercised in forecasting showers.

Showers from the northeast.

The foehn developed <u>low bubble</u> that occasionally forms in the Piedmont area and moves southwestward by the upper winds has been mentioned above several times as a thundershower producer. It was stated that the South Carolina piedmont region

was a favored area for such development, but this is not the only area east of the mountains where these developments are noted. They may be observed to originate over Maryland and Virginia, or even farther north. Namias has tried to show by isentropic analysis that the whole movement may attend a moist tongue circulating around an anticyclonic dome in the Ohio Valley, bringing moisture from the Lakes Begion around and down the Atlantic Plain at the insentropic level. While such a transport of moisture may occur, it must be realized that more moisture is likely to be present initially in the Atlantic plain than in A crossing the mountains and swinging south. In other words, there is usually safficient moisture present. The returning winds aloft, being relatively cooler, steepenk the lapse rate over the super-heated moist air in the surface layers east of the mountains and may add some moisture at higher levels. At any rate, this is a very good shower type, and they will progress from the northeast down the Atlantic plain, and then may continue west-southwest and westward over the Gulf States.

anywhere from Maryland to Georgia. In summer it will usually show an 8:30 a.m. isotherm of eighty degrees or higher. Then if the upper winds show the proper circulation, thundershowers will form and advance south and southwest. This movement will also result where a rise in pressure from the St. Lawrence Valley area develops southward over the north and middle Atlantic States. Clean—art cases do not seem as often as complicated types of this condition. Like all other types, the faceaster wice have to size up the incluidual situations according to the other festures of the map. Many half developed conditions wice he noted. At times the supper winds give good movement, but at others will be light are malefinite.